Low Doses and Radiation Risk in vivo
نویسنده
چکیده
The “Linear No Threshold” hypothesis, used in all radiation protection practices, assumes that all doses, no matter how low, increase risk. However, in human and other mammalian cells, low doses of low LET radiation such as gamma and X-rays induce an adaptive response that protects against both radiation-induced and spontaneous risk. An in vivo test of the hypothesis in mice showed that a 100-mGy dose of γ-radiation protected the mice by increasing latency for acute myeloid leukemia initiated by a subsequent large dose. A similar result was observed in cancer prone mice, where a 10-mGy adapting exposure prior to a large acute dose increased latency for lymphomas without altering frequency. Increasing the adapting dose to 100-mGy eliminated the protective effect. In the cancer prone mice, a 10-mGy dose alone, without a subsequent high dose, increased latency for spontaneous osteosarcomas and lymphomas without altering frequency. Increasing the dose to 100-mGy decreased latency for spontaneous osteosarcomas but still increased latency for lymphomas, indicating that this higher dose was in a transition zone between reduced and increased risk, and that the transition dose from protective to detrimental effects is tumor type specific. In genetically normal fetal mice, prior low doses also protected against radiation-induced teratogenic effects. In genetically normal adult male mice, high doses induce mutations in sperm stem cells, detectable as heritable mutations in the offspring of these mice. A prior 100-mGy dose protected the male mice from induction of these heritable mutations by the large dose. We conclude that adaptive responses are induced by low doses in normal or cancer prone mice, and that these responses can reduce the risk of cancer, teratogenesis and heritable mutations. At low doses in vivo, the relationship between radiation dose and risk is not linear, and low radiation doses can reduce risk.
منابع مشابه
An in-vivo study on the energy dependence of X-ray biological effectiveness
Background: The International Commission on Radiological Protection (ICRP) has attributed the same relative risk for X and gamma radiations of all energies. Several studies have proven that the biological effect of low energy photon is more than that of higher ones. The assessment of risks is important due to the wide use of low energy X-rays for mammography screening and other diagnostic appli...
متن کاملQuantitation of genome damage and transcriptional profile of DNA damage response genes in human peripheral blood mononuclear cells exposed in vitro to low doses of neutron radiation
Background: Humans are exposed to ionizing radiation from different sources that include natural, occupational, medical, accidental exposures. Evaluation of the effect of low level of neutron exposure to human cells in vitro has important implications to human health. Attempts were made to measure genome damage, transcriptional profile of DNA damage response and repair genes in peripheral blood...
متن کاملSperm DNA damage in mice irradiated with various doses of X-rays alone or in combination with actinomycin D or bleomycin sulfate: an in vivo study
Background: DNA damage in male germ cells due to exposure to environmental and manmade physico-chemical genotoxic agents is considered as the main cause of male infertility. The aim of this study was to evaluate the effects of combined modalities (radiotherapy and chemotherapy) routinely used for cancer treatment on mouse sperm chromatin in vivo. Materials and Methods: Forty-eight mice were div...
متن کاملComparison of Absorbed Dose in Thyroid and Lens as Organs at Risk Between in vivo Dosimetry and 3-D Treatment Planning Calculation in Head and Neck Radiotherapy by Linac Beam
Introduction: Critical organs and structures may receive significant amounts of irradiation even if they are not the target of radiotherapy or located outside the treatment field. Although the sensitive thyroid gland and lens are not directly the targets of treatment, they can be affected by irradiation during the treatment of tumours in head and neck region. The purpose of thi...
متن کاملRadiation cancer risk from doses to newborn infants hospitalized in neonatal intensive care units in children hospitals of Isfahan province
Background: This study aimed to investigate dose area product (DAP), effective dose, and radiation risk in newborn infants hospitalized in neonatal intensive care units in Isfahan and Kashan. Materials and Methods: During a period of six months, DAP for chest X-ray examinations for newborn infants hospitalized in NICUs of five special hospitals including Beheshti (in Kashan), Al-Zahra, Imam Hos...
متن کاملRadiation Induced Bystander Effect
Introduction: Radiation effects observed in cells that are not irradiated are known as non-targeted effects. Radiation induced bystander effect (RIBE) as a kind of non-targeted effect has been introduced in recent years. RIBE occurs in unexposed cells which are related to adjacent or distant irradiated cells. RIBE contradict with "target theory" which necessitates radiation tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004